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Abstract

Wave motion in thin, uniform, curved beams with constant curvature is considered. The beams are assumed to undergo

only in-plane motion, which is described by the sixth-order coupled differential equations based on Flügge’s theory. In the

wave domain the motion is associated with three independent wave modes. A systematic wave approach based on

reflection, transmission and propagation of waves is presented for the analysis of structures containing curved beam

elements. Displacement, internal force and propagation matrices are derived. These enable transformations to be made

between the physical and wave domains and provide the foundation for systematic application of the wave approach to the

analysis of waveguide structures with curved beam elements. The energy flow associated with waves in the curved beam is

also discussed. It is seen that energy can be transported independently by the propagating waves and also by the interaction

of a pair of positive and negative going wave components which are non-propagating, i.e. their wavenumbers are

imaginary or complex. A further transformation can be made to power waves, which can transport energy independently.

Numerical examples are given to illustrate the wave approach. The first concerns power transmission and reflection

through a U-shaped connector between two straight beams while the second concerns the free vibration of finite curved

beams where results are compared to other published results.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Curved beams are used widely in built-up structures and hence their dynamic behaviour is of interest.
Previous work in this area has been summarised in several articles, for example [1–3]. Wu and Lundberg [4]
have investigated the transmission of energy through a curved section connecting two straight beams. They
presented numerical results in the form of polar radiation diagrams for beams with different curvatures. Walsh
and White [5] considered the energy flow associated with a single propagating wave component in a curved
beam based on four different theories—Love’s theory, Flügge’s theory and the corrections for rotary inertia
and shear deformation. They derived expressions which relate the power to the extensional, bending and shear
waves. Kang et al. [6] applied the wave approach based on the reflection, transmission and propagation of
waves to obtain the natural frequencies of finite curved beams.

The main aim of this paper is to describe a systematic wave approach based on reflection, transmission and
propagation of waves and to use this to determine the energy flow characteristics of waves in a thin, curved
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

List of symbols

a, d amplitudes of waves
a, b, d vector of amplitudes of waves
A cross-sectional area
b width
cl phase velocity of longitudinal wave
C arbitrary constant
ds arc length
dy arc angle
E modulus of elasticity
E unitary matrix, the columns of which are

eigenvectors of P
f vector of generalised internal forces
F propagation matrix
h thickness
I the second moment of area
I identity matrix
k wavenumber
kb bending wavenumber
kl longitudinal wavenumber
L length
M bending moment
N normal force
p vector of amplitudes of power waves
P power matrix, Hermitian
Q shear force
R radius of curvature
R reflection matrix
s circumferential coordinate
t time
T transmission matrix
u tangential displacement of the centreline
V diagonal matrix consisting of the (real)

eigenvalues of P
w radial displacement of the centreline
w vector of generalised displacements
z coordinate along the normal to the

centreline

a ratio of tangential displacement to radial
displacement

k curvature, k ¼ 1/R
l wavelength
x dimensionless wavenumber
P power
r density
R power reflection coefficient
t power transmission coefficient
j rotation of the normal to the centreline
/ column vector of U
U internal force matrix
w dimensionless radius of gyration
w column vector of W
W displacement matrix
o angular frequency
oc ring frequency
O dimensionless angular frequency

Subscripts

B denote bending motion
L denote longitudinal motion
N denote nearfield wave

Superscripts

+ denote positive-going direction in x-axis
� denote negative-going direction in x-axis
\ combined with R and T, denote the case

where waves are incident from the right-
hand side

Operators

T transpose
H Hermitian
* complex conjugate
Re( � ) real part of a quantity
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beam. The approach is also valid when rotary inertia, shear deformations and damping are important, but
these effects are neglected here. Attention is focused on in-plane motion and Flügge’s theory is used. The
motion is described in terms of six independent (or uncoupled) wave components. Examples are given to show
how the approach can be used for the analysis of structures with curved elements.

In Section 2, the dispersion relation and the ratio of tangential displacement to radial displacement for the
six wave components are obtained. In Section 3 displacement, internal force and propagation matrices are
derived. These enable transformations to be made between the physical and wave domains and provide the
foundation for systematic application of the wave approach [7] to waveguide structures with curved elements.
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In Section 4, the energy flow associated with the wave components is obtained in a systematic way. Their
contributions are classified according to different conditions for the wavenumbers. The energy flow paths are
identified at a frequency given. Energy can be transported independently by propagating waves or by pairs of
wave components with imaginary or complex wavenumbers. A further transformation is found to power wave
components—these propagate energy independently through the curved beam. In Section 5 numerical
examples are considered. The first concerns power transmission and reflection through a U-shaped connector
between two straight beams while the second concerns the free vibration of finite curved beams where results
derived here are compared to results published in the literature.

2. In-plane wave motion in curved beams

Consider a small segment of a curved beam with a subtended angle dy at the centre of curvature as shown in
Fig. 1 (a list of symbols is given in the Nomenclature). The centreline is the locus of the centroids of each cross-
sectional segment. The circumferential coordinate along the centreline is denoted by s and the radial
coordinate normal to the centreline is z. The displacements of the centreline in the radial and tangential
directions are denoted by w and u, respectively. The arc length of the segment is ds ¼ Rdy; where R is radius
of curvature of the centreline.

Neglecting the effects of shear deformation and rotary inertia, the governing equations for free vibration in
the radial and tangential directions are given by [5]

�EI
q4w

qs4
þ

2
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where E is the Young’s modulus, I the second moment of area, A the cross-sectional area, r the density and t is
time. The rotation j of the cross-section and the normal force N, bending moment M, and shear force Q are
given by [5]
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Fig. 1. Differential element of a thin, curved beam and sign convention of physical quantities.
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Eqs. (1) and (2) describe the in-plane motion of thin, uniform, curved beams with constant curvature based on
Flügge’s theory. When R tends to infinity, the radial and tangential displacements decouple and the equations
become those for a uniform, straight beam.

2.1. Dispersion relationships

Using Eqs. (1) and (2), a transformation from the physical domain into the wave domain can be made and
the dispersion relationship for each wave component is obtained. The radial and tangential displacements
satisfying Eq. (1) are assumed to be time harmonic and of the form:

wðs; tÞ ¼ Cwe
iðot�ksÞ; uðs; tÞ ¼ Cu e

iðot�ksÞ, (3a,b)

where Cw and Cu are constants and k is the wavenumber for the curved beam. Substituting Eq. (3a,b) into Eq.
(1) gives

I

AR2
ðk2R2 � 1Þ2 þ 1�

r
E

R2o2 �ikR

ikR k2R2 �
r
E

R2o2

2
664

3
775 Cw

Cu

( )
¼ 0. (4)

Setting the determinant of the matrix in Eq. (4) to zero gives the dispersion equation

k6
� ðk2

L þ 2k2Þk4
þ ðk4 � k4

B þ 2k2k2
LÞk

2
� ðk4k2

L þ k2k4
B � k2

Lk4
BÞ ¼ 0, (5)

where kL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ro2=E

p
and kB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rAo2=EI4

p
are the longitudinal and bending wavenumbers for a straight

beam, respectively, and k ¼ 1/R is the curvature. The beam is undamped so that kL and kB are real.
Since Eq. (5) is a cubic equation in k2, there are three pairs of solutions at any given frequency, three for

positive-going waves and three for negative-going waves. When k tends to zero, four wavenumbers asymptote
to the bending wavenumbers and two wavenumbers asymptote to the longitudinal wavenumbers. The ring
frequency, oc, which is the non-zero frequency corresponding to k ¼ 0, is given by

oc ¼
cL

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

I

AR2

r
, (6)

where cL is the longitudinal phase velocity for a uniform straight bar. Note that this cut-off frequency
obtained from Flügge’s theory slightly differs from that obtained from Love’s theory by the term I/AR2. This
difference is likely to be negligible since I/AR2 (or h/R for a rectangular beam) should be small for the thin
beam assumption to be valid.

Solutions to Eq. (5) are obtained as described in Appendix A. The non-dimensional radius of gyration,
wavenumber and frequency are introduced and are, respectively, given by

w ¼

ffiffiffiffiffiffiffiffiffi
I

AR2

r
; x ¼ kR; O ¼

oR

cL

(7a,b,c)

so that Eq. (5) can be re-written as

w2ðx2 � 1Þ2 þ 1� O2
� �

ðx2 � O2Þ � x2 ¼ 0. (8)

Fig. 2 shows the wavenumbers for the curved beam with w2 ¼ 1/1200, which corresponds to h/R ¼ 0.1 if the
beam is rectangular. The frequency range considered is far below the ‘‘cross-over’’ frequency, which is the
frequency when the wavenumber for the predominantly flexural wave is equal to the wavenumber for the
predominantly longitudinal wave, given by O ¼ 1=w � 34:6. At this frequency the longitudinal wavelength
lL ¼ 2pw [5]. The behaviour falls into four frequency regions and is characteristic of curved beams of other
dimensions. There are five bifurcation points at which there are qualitative changes in the wavenumbers. The
lowest two bifurcations are located near the frequency O1 � w=3 � 10�2. At this frequency four propagating
waves (with real wavenumbers) change into two decaying oscillating waves whose wavenumbers are complex
conjugates. The next two bifurcations are located near the frequency O2 � 4w � 0:16 where the bending
wavelength lB ¼ pR. Here the two decaying oscillating waves change into four evanescent waves which have
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Fig. 2. Dispersion relations for wave modes in the curved beam with w2 ¼ 1/1200: (a) real values of x and (b) imaginary values of x.
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purely imaginary wavenumbers. The highest bifurcation point is at the ring frequency O3 ¼ 1, i.e. when
lL ¼ 2pR. Here two of the evanescent waves change into two propagating waves.

The wavenumbers of positive-going waves are defined to be such that

Imfkgp0; Re qk=qo
� �

40 if Imfkg ¼ 0. (9a,b)

Eq. (9a) indicates that, if the imaginary value of the wavenumber of a positive-going wave is non-zero, the
amplitude of the wave decays in the positive s direction. If the imaginary value is zero, Eq. (9b) indicates that
the energy transport velocity associated with a positive-going wave should be positive.

Fig. 3 shows the wavenumbers for the positive-going waves in the curved beam with w2 ¼ 1/1200. In the
figure the frequency range is divided into four regions by the bifurcation points. In region I, the wavenumbers
for the three modes are all purely real so that all the wave modes propagate along the curved beam. One
interesting feature is that the (real) wavenumbers for the second mode xþ2 are negative in this region. Thus the
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phase velocity of the wave mode is negative while the energy is transported in the positive s direction, i.e. a
wave transports energy in the direction opposite to the direction of the phase velocity. Such behaviour—the
phase and group velocities having opposite signs—is commonly observed in waveguides other than those of
the simplest types. In region II, xþ2 is complex and, since xþ2 ¼ �ðx

þ
3 Þ

n, this represents a spatially decaying
standing wave as discussed above. Only the first mode can propagate. In region III, also, only the first mode
propagates. The other wave modes are both evanescent, i.e., they decay without a change in phase. In region
IV, xþ3 becomes purely real, representing a propagating wave. In this region the wavenumbers are broadly
analogous to those of bending ðxþ1 ; x

þ
2 Þ and extensional waves ðxþ3 Þ in a straight beam.

2.2. Displacement ratio

The radial and tangential displacements of the curved beam are not independent of each other. From Eq.
(4), the ratio a ¼ Cu=Cw of these displacements is given by

a ¼
ikk

k2
L � k2

. (10)

The six waves associated with the motion of the curved beam are now specified by subscript i, where
i ¼ 1; 2; . . . ; 6, where i ¼ 1; 2; 3 denote the three positive-going waves, respectively, and i ¼ 4; 5; 6 denote the
corresponding negative-going waves. The ratio ai for a wave i is given by replacing k with ki in Eq. (10) to give

ai ¼
ikki

k2
L � k2

i

; i ¼ 1; 2; . . . ; 6. (11)

Note that a4;5;6 ¼ �a1;2;3 since k4;5;6 ¼ �k1;2;3.
Fig. 4 shows the displacement ratio for the three positive-going waves for the curved beam with w2 ¼ 1/1200.

The four regions shown in Fig. 3 are not marked for clarity, but can be inferred from the discontinuous
behaviour of the curves. It can be seen that the radial motion is dominant for the first wave mode since a1j jo1
in the frequency range considered. In region II a2j j ¼ a3j j. In regions III and IV, the radial motion is dominant
for the second mode. Near the ring frequency O ¼ 1, the radial motion is dominant for the third mode (the
magnitude of a3 is zero at the ring frequency) but, as frequency increases, the tangential motion becomes
dominant. The phase difference between the displacement components is between p/2 and �p/2 radians.
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3. Matrix representation of wave motion

A systematic methodology for wave analysis based on reflection, transmission and propagation of waves is
provided by the definition of displacement, internal force and propagation matrices [7]. In this section, the
matrices for the curved beam are presented. Since the curved beam is a three-mode system, the relevant vectors
and matrices are of order 3� 1 and 3� 3, respectively.

Assuming the displacements to be of the form given by Eq. (3), the radial and tangential displacements of
the beam are given, respectively, by

wðsÞ ¼ C1 e
�ik1s þ C2 e

�ik2s þ C3 e
�ik3s þ C4 e

�ik4s þ C5 e
�ik5s þ C6 e

�ik6s,

uðsÞ ¼ a1C1 e
�ik1s þ a2C2 e

�ik2s þ a3C3 e
�ik3s þ a4C4 e

�ik4s þ a5C5 e
�ik5s þ a6C6 e

�ik6s. ð12a;bÞ

Eq. (12a,b) are not in a suitable form for later development since, at high frequencies (where the radial and
tangential displacements decouple), a3 and a6 tend to infinity. Instead, the radial and tangential displacements
are expressed as

wðsÞ ¼ C1 e
�ik1s þ C2 e

�ik2s þ ða3Þ
�1C3 e

�ik3s þ C4 e
�ik4s þ C5 e

�ik5s þ ða6Þ
�1C6 e

�ik6s,

uðsÞ ¼ a1C1 e
�ik1s þ a2C2 e

�ik2s þ C3 e
�ik3s þ a4C4 e

�ik4s þ a5C5 e
�ik5s þ C6 e

�ik6s. ð13a;bÞ

Now, at high frequencies, all the coefficients a1,2,4,5 and ða3;6Þ
�1 tend to zero.

The generalised displacements and corresponding internal forces can be grouped in the vectors

w ¼

w

j

u

8><
>:

9>=
>;; f ¼

Q

M

N

8><
>:

9>=
>;. (14a,b)

Note that the rotation j and internal forces Q, M and N are obtained from Eqs. (2) and (13). The wave vectors
consisting of the amplitudes of the waves are defined by

aþðsÞ ¼

C1 e
�ik1s

C2 e
�ik2s

C3 e
�ik3s

8><
>:

9>=
>;; a�ðsÞ ¼

C4 e
�ik4s

C5 e
�ik5s

C6 e
�ik6s

8><
>:

9>=
>;. (15a,b)

The displacement and internal force vectors are related to the vectors of wave amplitudes by [7]

w ¼ Wþaþ þW�a�; f ¼ Uþaþ þU�a�, (16)

where the matrices W and U define the transformation from the wave domain to the physical domain. They are
given by

Wþ ¼ ½w1 w2 w3 �; W� ¼ ½w4 w5 w6 �; Uþ ¼ /1 /2 /3

h i
; U� ¼ /4 /5 /6

h i
, (17a,b,c,d)

where the column vectors wi and /i for i ¼ 1; 2; 4; 5 are

wi ¼

1

�ðkai þ ikiÞ

ai

8><
>:

9>=
>;; /i ¼

iEIkiðk
2 � k2

i Þ

EIðk2 � k2
i Þ

EAðk� ikiaiÞ þ EIkðk2 � k2
i Þ

8>><
>>:

9>>=
>>; (18a,b)

and wi and /i for i ¼ 3; 6 are

wi ¼
1

ai

1

�ðkai þ ikiÞ

ai

8><
>:

9>=
>;; /i ¼

1

ai

iEIkiðk
2 � k2

i Þ

EIðk2 � k2
i Þ

EAðk� ikiaiÞ þ EIkðk2 � k2
i Þ

8>><
>>:

9>>=
>>;. (19a,b)
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If Ob1, when the radial and tangential displacements decouple, the matrices W+ and U+ asymptote to

Wþ �

1 1 0

�ikB �kB 0

0 0 1

2
64

3
75; Uþ �

�iEIk3
B EIk3

B 0

�EIk2
B EIk2

B 0

0 0 �iEAkL

2
64

3
75, (20a,b)

i.e., the matrices are composed of those of the uniform straight beam and the other elements are zero, as
expected. Using these matrices, the reflection and transmission matrices for arbitrary discontinuities or for
boundaries can be found in a simple manner (e.g. Ref. [7], or see Section 5 for an example).

The propagation matrix F, describing propagation of waves over a distance L along the curved beam, is
given by

FðLÞ ¼

e�ik1L 0 0

0 e�ik2L 0

0 0 e�ik3L

2
64

3
75. (21)

Note that the propagation matrix is diagonal (i.e. the waves are not coupled during propagation) and the
diagonal elements are independent of position.

4. Energy flow in curved beams

The time-averaged power P associated with waves in one-dimensional structures can be expressed as [7]

P ¼ 1
2
aHPa, (22)

where a ¼ ½ ðaþÞ
T
ða�ÞT �T and the power matrix P is given by

P ¼
io
2

ðWþÞHUþ ðWþÞHU�

ðW�ÞHUþ ðW�ÞHU�

" #
�
ðUþÞHWþ ðUþÞHW�

ðU�ÞHWþ ðU�ÞHW�

" #" #
. (23)

Since the matrix P is Hermitian, the power P is always real.
Substituting Eq. (17) into Eq. (23) gives the power matrix P for the curved beam. Then Pmn, the (m,n)th

element of the matrix, for m ¼ 1; . . . ; 6 and n ¼ 1; . . . ; 6 is

Pmn ¼
io
2
ðwH

m/n � /H
mwnÞ. (24)

4.1. Energy flow associated with wave components

In Appendix B, Pmn is given for all possible pairs of the six wave components. It is seen that energy can be
transported in three cases:
�
 by a single wave with real wavenumber (i.e., a propagating wave);

�
 by interaction between two opposite-going waves of one mode, for which the wavenumber is purely

imaginary (i.e., two opposite-going nearfield waves);

�
 by interaction between two opposite-going waves from different modes, for which the wavenumbers are a

complex conjugate pair.

These results are consistent with the work by Langley [8] for a general one-dimensional dynamic system.

4.2. Energy flow at a single frequency

In this section, the energy flow mechanisms (carriers) at a given frequency are summarised using results
from Appendix B.
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(i)
 In region I: All waves are propagating and the wavenumbers are real in this frequency range. The power
matrix becomes diagonal and is given by

P ¼

P11 0 0 0 0 0

0 P22 0 0 0 0

0 0 P33 0 0 0

0 0 0 �P11 0 0

0 0 0 0 �P22 0

0 0 0 0 0 �P33

2
6666666664

3
7777777775
, (25)

where the diagonal elements are

P11 ¼ oEIk1 2ðk2
1 � k2Þ þ

k4
Bk

2

ðk2
L � k2

1Þ
2

( )
,

P22 ¼ oEIk2 2ðk2
2 � k2Þ þ

k4
Bk

2

ðk2
L � k2

2Þ
2

( )
,

P33 ¼ oEA
k2

L

k3
1þ

2ðk2
3 � k2Þðk2

L � k2
3Þ

2

k4
Bk2

( )
. ð26a; b; cÞ

The power associated with the vector of wave amplitudes a is given by Eq. (22). For example, suppose
a ¼ a1 0 0 0 0 0

� �T
, i.e. there is only a positive-going wave of the first mode of amplitude a1.

Then the power associated with the wave is given by

P ¼
1

2

X
j

Pjj aj

		 		2 ¼ 1

2
P11 a1j j

2. (27)
(ii)
 In region II: The non-zero elements are P11, P26, P35 and their counterparts P44, P62 and P53. In this case
P26 ¼ P�62 ¼ P�35 ¼ P53. Thus the power matrix is given by

P ¼

P11 0 0 0 0 0

0 0 0 0 0 P26

0 0 0 0 P�26 0

0 0 0 �P11 0 0

0 0 P26 0 0 0

0 P�26 0 0 0 0

2
6666666664

3
7777777775
, (28)

where

P26 ¼ �
ioEI

k
k2
2 � ðk

n

2Þ
2


 �
ðkn

2Þ
2
� k2

1


 �
. (29)

For example, suppose a ¼ ½ 0 a2 0 0 0 a6 �
T. Then the power is given by

P ¼ Re P26ða2Þ
�a6ð Þ, (30)

where Re ð�Þ denotes the real part of the quantity. The direction of energy flow depends on the phases of
P26, (a2)

* and a6.
The power matrix is not diagonal in this region. A further transformation can be defined using a power

basis, where energy is transported independently by a single component, using the eigenvalues and
eigenvectors of the power matrix. Let V be the diagonal matrix consisting of the (real) eigenvalues and E

be the (unitary) matrix whose columns are the eigenvectors of P. Since P ¼ EVE
�1, Eq. (22) can be

written as

1 H
P ¼
2
p Vp, (31)
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where p ¼ E�1a is a vector of power wave amplitudes. Since V is diagonal, Eq. (31) indicates that energy is
transported independently by the individual power wave components of p. In this region V and E are
given by

V ¼

P11 0 0 0 0 0

0 P26j j 0 0 0 0

0 0 P26j j 0 0 0

0 0 0 �P11 0 0

0 0 0 0 � P26j j 0

0 0 0 0 0 � P26j j

2
666666666664

3
777777777775
,

E ¼

1 0 0 0 0 0

0
1ffiffiffi
2
p 0 0 0

fffiffiffi
2
p

0 0
1ffiffiffi
2
p 0

fnffiffiffi
2
p 0

0 0 0 1 0 0

0 0
fffiffiffi
2
p 0 �

1ffiffiffi
2
p 0

0
fnffiffiffi
2
p 0 0 0 �

1ffiffiffi
2
p

2
66666666666666666664

3
77777777777777777775

, ð32a;bÞ

where f ¼ P26= P26j j.

(iii)
 In region III: The power matrix is given by

P ¼

P11 0 0 0 0 0

0 0 0 0 P25 0

0 0 0 0 0 P36

0 0 0 �P11 0 0

0 P�25 0 0 0 0

0 0 P�36 0 0 0

2
6666666664

3
7777777775
, (33)

where the element P11 is the same as Eq. (26a) and

P25 ¼ �oEIk2 2ðk2
2 � k2Þ þ

k4
Bk

2

ðk2
l � k2

2Þ
2

( )
; P36 ¼ �oEA

k2
L

k3
1þ

2ðk2
3 � k2Þðk2

L � k2
3Þ

2

k4
Bk2

( )
. (34a,b)

The elements P25 and P36 are negative-imaginary in this region so that V and E are

V ¼

P11 0 0 0 0 0

0 P25j j 0 0 0 0

0 0 P36j j 0 0 0

0 0 0 �P11 0 0

0 0 0 0 � P25j j 0

0 0 0 0 0 � P36j j

2
666666666664

3
777777777775
,
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E ¼

1 0 0 0 0 0

0
1ffiffiffi
2
p 0 0 �

iffiffiffi
2
p 0

0 0
1ffiffiffi
2
p 0 0 �

iffiffiffi
2
p

0 0 0 1 0 0

0
iffiffiffi
2
p 0 0 �

1ffiffiffi
2
p 0

0 0
iffiffiffi
2
p 0 0 �

1ffiffiffi
2
p

2
6666666666666666664

3
7777777777777777775

. ð35a;bÞ

Power can thus be transmitted by wave mode 1, wave mode 4, or by the superposition of waves in modes 2
and 5 or in 3 and 6.
(iv)
 In region IV: The power matrix is given by

P ¼

P11 0 0 0 0 0

0 0 0 0 P25 0

0 0 P33 0 0 0

0 0 0 �P11 0 0

0 P�25 0 0 0 0

0 0 0 0 0 �P33

2
6666666664

3
7777777775
, (36)

where the elements P11, P33 and P25 are the same as Eqs. (26a), (26c) and (34a), respectively. The element
P25 is negative-imaginary in this region so that V and E are

V ¼

P11 0 0 0 0 0

0 P25j j 0 0 0 0

0 0 P33 0 0 0

0 0 0 �P11 0 0

0 0 0 0 � P25j j 0

0 0 0 0 0 �P33

2
666666666664

3
777777777775
,

E ¼

1 0 0 0 0 0

0
1ffiffiffi
2
p 0 0 �

iffiffiffi
2
p 0

0 0 1 0 0 0

0 0 0 1 0 0

0
iffiffiffi
2
p 0 0 �

1ffiffiffi
2
p 0

0 0 0 0 0 1

2
66666666666664

3
77777777777775
. ð37a;bÞ

Now power is transported independently by wave mode 1, wave mode 3 or a superposition of wave modes
2 and 5.
Fig. 5 shows the magnitudes of the non-zero elements of P for the curved beam with w ¼ 1/1200 as a
function of a frequency. There are always six energy transport paths at any frequency, but some of these are
2

not shown in the figure (e.g. P44, P55 and P66 in region I). At high frequencies, the powers associated with the
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Fig. 5. Non-zero elements of the power matrix for the curved beam with w2 ¼ 1/1200: |P11| ( ), |P22| ( ), |P33| ( ), |P25|
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Fig. 6. Reflection and transmission of waves through a curved beam with constant curvature.
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waves tend to those of the straight beam: it is seen that the normalised magnitudes of P11, P25 and P36 tend to
unity above the ring frequency O ¼ 1.
5. Numerical examples

In this section, two numerical examples are described. The first concerns wave transmission through a
curved connector and illustrates how the general matrix formulation can be used to model structures
composed of waveguides, some elements of which are curved beams. In the second example, the wave
approach is used to calculate natural frequencies of finite structures.
5.1. Wave transmission through a curved beam

The propagation of waves through a curved beam with constant curvature, subtending an angle p and
connecting two straight beams as shown in Fig. 6, is considered. The general matrix formulation is applied to
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couple the curved beam to the straight regions. The beams all have the same material properties, with
rectangular cross-sections of thickness h and width b.

The vector of wave amplitudes incident on the left-hand side of junction 1 is a+ and the vectors of reflected
and transmitted waves are a� and d+, respectively. These vectors are of size 3� 1: the first and second
elements are the propagating and nearfield waves relating to bending motion of the straight beam,
respectively, and the third element is the propagating wave relating to longitudinal motion.

The junctions between the straight and curved regions form discontinuities at which waves are reflected and
transmitted. The reflection and transmission matrices can be readily found if the displacement and internal
force matrices W and U are known for the waveguides (e.g. Ref. [7]). For example, continuity and equilibrium
conditions at junction 1 are

wa ¼ wb; fa ¼ fb, (38a,b)

where the subscripts a and b denote the left- and right-hand sides of junction 1, respectively. Incident waves a+

produce reflected and transmitted waves a� and b+ whose amplitudes are therefore such that

Wþa a
þ þW�a a

� ¼ Wþb b
þ; Uþa a

þ þU�a a
� ¼ Uþb b

þ. (39a,b)

The matrices W	a and U	a for a straight beam are given by [7]

Wþa ¼

1 1 0

�ikB �kB 0

0 0 1

2
664

3
775; Uþa ¼

�iEIk3
B EIk3

B 0

�EIk2
B EIk2

B 0

0 0 �iEAkL

2
664

3
775,

W�a ¼

1 1 0

ikB kB 0

0 0 1

2
664

3
775; U�a ¼

iEIk3
B �EIk3

B 0

�EIk2
B EIk2

B 0

0 0 iEAkL

2
664

3
775, ð40a;b; c;dÞ

while the matrices Wþb and Uþb for the curved beam are given by Eq. (17a,c). From Eq. (39), the reflection and
transmission matrices R1 and T1 at junction 1 for waves incident from the left-hand side of junction 1 are given
by [7]

R1 ¼ Uþb ðW
þ
b Þ
�1W�a �U�a

� ��1
�Uþb ðW

þ
b Þ
�1Wþa þUþa

� �
,

T1 ¼ U�a ðW
�
a Þ
�1Wþb �Uþb

� ��1
U�a ðW

�
a Þ
�1Wþa �Uþa

� �
. ð41a;bÞ

The other reflection and transmission matrices R

Þ

1, T

Þ

1, R2, T2, R

Þ

2 and T

Þ

2 can be obtained in a similar way,

the subscripts 1 and 2 referring to junction 1 and 2, while d

Þ

indicates a matrix for which waves are incident
from the right-hand side of the discontinuity. The propagation matrix F between the junctions is given by Eq.
(21). Using the reflection, transmission and propagation matrices, the net reflected and transmitted waves can
be expressed as [7]

a� ¼ R1 þ T

Þ

1FR2F½I� R

Þ

1FR2F�
�1T1

� 
aþ; dþ ¼ T2F½I� R

Þ

1FR2F�
�1T1

� 
aþ, (42a,b)

where I is the identity matrix.
Consider first the case where a propagating bending wave of amplitude aþ1 is incident from the left-hand side

of junction 1. The incident waves are then aþ ¼ ½ a
þ
1 0 0 �T. The power input to the curved connector is [7]

Pi ¼ oEIk3
B aþ1
		 		2. (43)

If the amplitudes of the reflected waves are a� ¼ ½ a
�
1 a�2 a�3 �

T, the reflected power is

Pr ¼ �oEIk3
B a�1
		 		2 � 1

2
oEAkL a�3

		 		2. (44)
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Thus the total power reflection coefficient R ¼ Pr/Pi is given by

R ¼ RBB þ RBL, (45)

where

RBB ¼
a�1
		 		2
aþ1
		 		2 ; RBL ¼

kB

2kL

a�3
		 		2
aþ1
		 		2 , (46a,b)

are the power reflection coefficients for bending-to-bending reflection and bending-to-longitudinal reflection,
respectively. Similarly, for transmitted waves dþ ¼ ½ d

þ
1 dþ2 dþ3 �

T, the total power transmission coefficient is
given by

t ¼ tBB þ tBL, (47)

where

tBB ¼
dþ1
		 		2
aþ1
		 		2 ; tBL ¼

kB

2kL

dþ3
		 		2
aþ1
		 		2 . (48)

Note that the sum of the coefficients is unity for a conservative system, i.e.,

Rþ t ¼ RBB þ RBL þ tBB þ tBL ¼ 1. (49)

Suppose now that the incident waves are aþ ¼ ½ 0 0 aþ3 �
T, i.e., a longitudinal wave of amplitude aþ3 is

incident from the left-hand side of junction 1. The power reflection and transmission coefficients are now

R ¼ RLB þ RLL; t ¼ tLB þ tLL, (50a,b)

where

rLB ¼
2kL

kB

a�1
		 		2
aþ3
		 		2 ; rLL ¼

a�3
		 		2
aþ3
		 		2 ; tLB ¼

2kL

kB

dþ1
		 		2
aþ3
		 		2 ; tLL ¼

dþ3
		 		2
aþ3
		 		2 . (51a,b,c,d)

For a conservative system, the sum of these four coefficients is again unity.
Fig. 7 shows the power coefficients for the two cases aþ ¼ ½ a

þ
1 0 0 �T and aþ ¼ ½ 0 0 aþ3 �

T. It is seen
that tBL ¼ tBL and RBL ¼ RLB due to reciprocity. Above the ring frequency O ¼ 1, tBB and tLL are
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Fig. 7. Power transmission and reflection coefficients for the half-circular beam (a) when a propagating bending wave is incident: tBB

( ), tBL ( ), RBB ( ), RBL ( ) and (b) when a propagating axial wave is incident: tLB ( ), tLL ( ), RLB

( ), RLL ( ).



ARTICLE IN PRESS
S.-K. Lee et al. / Journal of Sound and Vibration 306 (2007) 636–656650
approximately equal to unity, i.e. the incident waves pass through the junctions and the curved beam freely
without scattering or conversion into the other wave mode. Below the ring frequency, the bending wave is
substantially transmitted but the longitudinal wave is mainly reflected backwards as a longitudinal wave. For
a frequency Oo10�2, it is seen that tBLERBL. Furthermore, R ¼ RLB+RLL ¼ 0.5 (thus t ¼ tLB+tLL ¼ 0.5) at
the ring frequency O ¼ 1, i.e., half the energy carried by the longitudinal wave is reflected and the other half is
transmitted.
5.2. Natural frequencies of finite beams

As a second example, the vibration of a finite, uniform, curved beam is considered. Kang et al. [6] studied
the same cases and comparison with their results is made.

Consider a uniform, curved beam subtending an angle yL, as shown in Fig. 8, where the radius of curvature
of the centreline, R, is constant. The amplitudes of waves at the ends are related by

dþ ¼ Faþ; d� ¼ RLd
þ; a� ¼ Fd�; aþ ¼ R0a

�, (52a,b,c,d)

where R0 and RL are reflection matrices at the ends (y ¼ 0 and y ¼ yL), respectively, and F is the propagation
matrix for the curved beam given by Eq. (21). The reflection matrices can be found straightforwardly [7]. For
example at y ¼ yL the boundary condition is

f ¼ �Kextw, (53)

where Kext is the dynamic stiffness matrix of the boundary. In terms of the matrices W and U it follows that

Uþdþ þU�d� ¼ �KextðW
þdþ þW�d�Þ (54)

and hence

RL ¼ �ðKextW
�
þU�Þ�1ðKextW

þ
þUþÞ. (55)

Similarly for the end at y ¼ 0

R0 ¼ �ðKextW
þ
�UþÞ�1ðKextW

�
�U�Þ. (56)

Rearranging Eq. (52) gives

½R0FRLF� I�aþ ¼ 0. (57)

Let C(o) be the determinant of the term in the bracket, i.e.,

CðoÞ ¼ R0FRLF� Ij j. (58)

The frequencies at which C(o) ¼ 0 are the natural frequencies of the beam. These can be found by, for
example, root searching methods or the Wittrick–Williams algorithm [9].
R

a+

a-
d+

d-� = 0

�L

Fig. 8. A finite uniform curved beam with constant curvature.
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The non-dimensional frequency

O0 ¼ oR2

ffiffiffiffiffiffiffi
rA

EI

r
(59)

is now introduced. Note that O0 ¼ O=w. Fig. 9 shows C(O0) for a curved beam with clamped–clamped ends for
w2 ¼ 1/1200 and yL ¼ 51. The frequencies at which the real and imaginary values of C(O0) are both zero are
indicated in the plot and are the natural frequencies. Fig. 10 shows the determinant C(O0) when the subtended
angle yL ¼ 1801. Similar figure was seen by Kang et al. [6] (Fig. 7 in their work), although they obtained results
based on Love’s theory and the present work obtains them based on Flügge’s theory.

Table 1 shows the first four non-dimensional natural frequencies O0 of the uniform curved beam for
w2 ¼ 1/1200. The results are compared to those obtained by Kang et al. [6]. It seems that the third frequency
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Fig. 9. Determinant C(O0) for a uniform circular beam with clamped–clamped ends, w2 ¼ 1/1200, yL ¼ 51: Re[C(O0)] (solid line), Im[C(O0)]
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Table 1

Non-dimensional natural frequencies O0 of a uniform, circular beam for w2 ¼ 1/1200

Span angle yL (deg) BC Mode Kang et al. [6] Wave approach

5 Clamped–clamped 1 1247.5675 1247.0700

2 2489.7481 2493.9590

3 — 2937.7038

4 3740.4334 3741.2092

Free–free 1 1247.1131 1247.4466

2 2493.9771 2494.2896

3 2937.7679 2937.2384

4 3741.4749 3741.4112

180 Clamped–clamped 1 4.3694551 4.3721593

2 9.4982704 9.5078102

3 17.704014 17.722215

4 25.641709 25.668470

Free–free 1 1.8363460 1.8371547

2 5.3028579 5.3078041

3 11.099972 11.111971

4 18.988464 19.010617
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Fig. 11. Natural frequencies of the curved beam (solid lines) and their asymptotic behaviour (dotted lines with arrows) as functions of the

subtended angle.

S.-K. Lee et al. / Journal of Sound and Vibration 306 (2007) 636–656652
O03 of the clamped–clamped beam of yL ¼ 51 is missing in the results of Kang et al. Otherwise the differences
are primarily due to the fact that the present work is based on Flügge’s theory instead of Love’s theory.

Fig. 11 shows the first five natural frequencies as functions of the angle yL subtended by the beam. In some
frequency regions the natural frequencies are more-or-less constant while in other regions they change
approximately linearly as yL increases. Fig. 11 also shows six further lines. The lines of zero slope are the
natural frequencies of the beam undergoing pure bending (or inextensional) motion while the other lines are
the frequencies of the beam undergoing pure extensional motion. In various frequency ranges the modes of
vibration are dominated by either bending or extensional motion. The results show that the mode sequences
changes as yL increases, even for the uniform curved beam: for example, when yLo41 the first mode of the
uniform beam is related to the pure extensional motion but when yLo41 the first mode is related to the pure
bending motion.
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6. Concluding remarks

This paper concerned in-plane motion of curved beams based on Flügge’s theory. Wave propagation was
discussed and power considered. Displacement and force matrices were derived—these allow transformations
to be made between the physical and wave domains enabling a systematic analysis to be made of waveguide
structures with curved components. The energy flow associated with waves in the curved beam was also
obtained in a systematic way. It was seen that energy is transported independently by propagating waves or by
the interaction of two wave components, for which the wavenumbers are imaginary or a complex conjugate
pair. A further transformation to power wave components was found—these components transport power
independently.

Numerical results for the power transmission and reflection through a U-shaped structure were obtained
using the wave approach based on reflection, transmission and propagation of waves. It was shown that,
above the ring frequency, the propagating waves can pass through the curved section with negligible reflection.
At the ring frequency, half the energy carried by the longitudinal wave is reflected and the other half is
transmitted. A further example was presented to illustrate how the wave approach can be used for the analysis
of the vibrations of finite structures.
Appendix A. Cubic equations

The roots of a cubic equation can be found in, for example, Abramowitz and Stegun [10]. Substituting
k2
¼ z into Eq. (5) gives

z3 þ a2z
2 þ a1zþ a0 ¼ 0, (A.1)

where

a2 ¼ �ðk
2
L þ 2k2Þ; a1 ¼ k4 � k4

B þ 2k2k2
L; a0 ¼ �ðk4k

2
L þ k2k4

B � k2
Lk4

BÞ. (A.2a,b,c)

Now let

r ¼ ð9a2a1 � 27a0 � 2a3
2Þ=54; q ¼ ð3a1 � a2

2Þ=9 (A.3a,b)

and

s1 ¼ rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q3 þ r2

p� �1=3
; s2 ¼ r�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q3 þ r2

p� �1=3
. (A.4a,b)

The three roots z1, z2 and z3 of the cubic Eq. (A.1) are then

z1 ¼ �
1

3
a2 þ ðs1 þ s2Þ,

z2 ¼ �
1

3
a2 �

1

2
ðs1 þ s2Þ þ i

ffiffiffi
3
p

2
ðs1 � s2Þ,

z3 ¼ �
1

3
a2 �

1

2
ðs1 þ s2Þ � i

ffiffiffi
3
p

2
ðs1 � s2Þ. ðA:5a;b; cÞ

Note that the three roots z1, z2 and z3 satisfy

z1 þ z2 þ z3 ¼ �a2; z1z2 þ z2z3 þ z3z1 ¼ a1; z1z2z3 ¼ �a0. (A.6a,b,c)

These results are used for the discussion in Section 4 of the power associated with the wave components. When
damping is neglected, the quantity q3+r2 in Eq. (A.4) is real since a2, a1 and a0 are all real. If q3+r240, one
root is real and two are complex conjugates; if q3+r2 ¼ 0, three roots are real and at least two are equal; and if
q3+r2o0, three roots are real and unequal. When damping exists, the three roots become complex.

The six wavenumbers are given by 	
ffiffiffiffi
zi
p

, where i ¼ 1; 2; 3, as shown in Fig. 2. The bifurcation points in
Fig. 2 are at the frequencies where q3+r2 ¼ 0. Note that there is an ambiguity in defining each frequency
relationship for z1, z2 and z3 [11]. This ambiguity arises in calculating the square and cube roots in Eq. (A.4).
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It can be partly removed by defining the cube root of a real quantity to be real. In any event, the roots are
associated with positive or negative going waves by the criterion given in Eq. (9).
Appendix B. Energy flow in curved beams

The values of Pmn are obtained for all possible pairs of the six wave components. In Section 3, wi and /i for
i ¼ 3; 6 do not have the same form as wi and /i for i ¼ 1; 2; 4; 5. However using these definitions would make
the following discussion unnecessarily long. Thus, for the time being, wi and /i for i ¼ 3; 6 are assumed to be
of the same form as that given in Eq. (18). This assumption will not affect the qualitative investigation of Pmn

since the difference only comes from dividing by the displacement ratio a3 or a6. Under this assumption, Eq.
(24) can be written as

Pmn ¼
o
2

EIðkn þ kn

mÞ k2
n þ ðk

n

mÞ
2
� 2k2


 �
þ EAðkn þ kn

mÞana
n

m � iEAkðan � anmÞ
� �

. (B.1)

Substituting Eq. (11) for the displacement ratio into Eq. (B.1) gives

Pmn ¼
oEIðkn þ kn

mÞ

2
k2

n þ ðk
n

mÞ
2
� 2k2 þ

k4
Bk

2

ðk2
L � k2

nÞ k2
L � ðk

n

mÞ
2


 �
( )

. (B.2)

Note again that Eq. (B.2) is only true for Pmn for m ¼ 1; 2; 4; 5 and n ¼ 1; 2; 4; 5, respectively. When the
components of the third mode are concerned (i.e. m or n is 3 or 6, respectively), it should be divided again by
a3, a6, or their self- or cross-product as required.
B.1. Energy flow due to a single wave component

The diagonal elements of the matrix P are related to the energy carried by a single wave component. When
n ¼ m, Eq. (B.2) becomes

Pmm ¼
oEIðkm þ kn

mÞ

2
k2

m þ kn

m


 �2
� 2k2 þ

k4
Bk

2

ðk2
L � k2

mÞ k2
L � ðk

n

mÞ
2


 �
( )

. (B.3)

There are three cases for the wavenumber km.
(i)
 Purely imaginary wavenumber: The first parenthesised term in Eq. (B.3) indicates that, if km is purely
imaginary (i.e., the wave mode is evanescent), the element will be zero. Thus P22 ¼ P44 ¼ 0 in regions III
and IV.
(ii)
 Purely real wavenumber: If km is purely real (i.e. kn

m ¼ km), Eq. (B.3) reduces to

Pmm ¼ oEIkm 2ðk2
m � k2Þ þ

k4
Bk

2

ðk2
L � k2

mÞ
2

( )
. (B.4)

Eq. (B.4) holds for wave components m ¼ 1; 2; 4; 5. For the third mode (i.e. m ¼ 3; 6), it becomes

Pmm ¼
oEIkm

amj j
2

2ðk2
m � k2Þ þ

k4
Bk

2

ðk2
L � k2

mÞ
2

( )
¼ oEA

k2
L

km

1þ
2ðk2

m � k2Þðk2
L � k2

mÞ
2

k4
Bk2

( )
. (B.5)

When k is small so that the terms involving k can be neglected with respect to km and km asymptotes to the
bending or longitudinal wavenumbers of the straight beam, Eqs. (B.4) and (B.5) asymptote to those for
the straight beam as expected.
(iii)
 Complex wavenumber: Now assume km is not purely real or purely imaginary. The wavenumber km and its
complex conjugate kn

m satisfy the characteristic equation

k6
m þ a2k

4
m þ a1k

2
m þ a0 ¼ 0; ðkn

mÞ
6
þ a2ðk

n

mÞ
4
þ a1ðk

n

mÞ
2
þ a0 ¼ 0, (B.6a,b)
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where a2, a1 and a0 are the coefficients given by Eq. (A.2). Subtracting Eq. (B.6a) from Eq. (B.6b) gives

k2
m � ðk

n

mÞ
2

� �
k4

m þ k2
mðk

n

mÞ
2
þ ðkn

mÞ
4
þ a2 k2

m þ ðk
n

mÞ
2


 �
þ a1

� �
¼ 0. (B.7)

Since the first bracketed term in Eq. (B.7) will not be zero if km is not purely real or purely imaginary, it
follows that

k4
m þ k2

mðk
n

mÞ
2
þ ðkn

mÞ
4
þ a2 k2

m þ ðk
n

mÞ
2


 �
þ a1 ¼ 0. (B.8)

Using Eq. (B.8) it can be shown that the bracketed term in Eq. (B.3) is zero for complex km.
According to the discussion above, a single wave component can transport energy only when the wavenumber
is purely real, as expected.

B.2. Energy flow due to two opposite-going waves of one mode

The non-diagonal elements of P are related to energy carried by the interaction between two different wave
components. First consider the case that a positive-going wave component of one mode interacts with the
negative-going component of the same mode, or vice versa. Six elements of the power matrix are relevant to
this case, i.e. P14, P25, P36, P41, P52 and P63. The power matrix is Hermitian so that the first three elements are
complex conjugates of the latter three elements. Since kn ¼ �km in this case, Eq. (B.2) becomes

Pmn ¼
oEIð�km þ kn

mÞ

2
k2

m þ ðk
n

mÞ
2
� 2k2 þ

k4
Bk

2

ðk2
L � k2

mÞ k2
L � ðk

n

mÞ
2


 �
( )

. (B.9)

Eq. (B.9) is the same as Eq. (B.3) except for the first parenthesised term. Thus the interaction between two
opposite-going wave components of one mode can transport energy only when the wavenumber is purely
imaginary: if km is real, the first parenthesised term is zero, and if km is complex, the bracketed term is zero.
Therefore P14 ¼ P41 ¼ 0 for all frequencies, P25 and P52 are non-zero in regions III and IV, and P36 and P63

are non-zero in region III. The non-zero element P25 is

P25 ¼ �oEIk2 2ðk2
2 � k2Þ þ

k4
Bk

2

ðk2
L � k2

2Þ
2

( )
(B.10)

and the non-zero element P36, after allowing for the normalisation with respect to a3 and a6, is

P36 ¼ �oEA
k2

L

k3
1þ

2ðk2
3 � k2Þðk2

L � k2
3Þ

2

k4
Bk2

( )
. (B.11)

Note again that the counterpart elements P52 and P63 are the complex conjugates of P25 and P36,
respectively.

B.3. Energy flow due to two different wave modes

Now consider the case that a wave component of one mode interacts with a component of another mode.
The elements P12, P13, P15, P16, etc., of the power matrix are relevant to this case. Since km and kn in Eq. (B.2)
are different wavenumbers, it follows from Eq. (A.6) that

ðk2
L � k2

mÞðk
2
L � k2

nÞðk
2
m þ k2

n � 2k2Þ þ k4
Bk

2 ¼ 0. (B.12)

Substituting k4
Bk

2 from Eq. (B.12) into Eq. (B.2) yields

Pmn ¼
oEIðkn þ kn
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 � . (B.13)
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Using the wavenumber ko for the third mode, which is related through Eq. (A.6a) to km and kn, Eq. (B.13)
reduces to

Pmn ¼
oEIðkn þ kn

mÞ k2
m � ðk

n

mÞ
2

� �
ðkn

mÞ
2
� k2

o

� �
2 k2

L � ðk
n

mÞ
2


 � . (B.14)
(i)
 The first bracketed term in the numerator of Eq. (B.14) indicates that the interaction of the two
components cannot transport energy if the wavenumber for one of the two interacting waves is purely real
or purely imaginary. Thus P12 ¼ P13 ¼ P15 ¼ P16 ¼ 0, P42 ¼ P43 ¼ 0, and P54 ¼ P64 ¼ 0 for all
frequencies.
(ii)
 Only P23, P26 and P35 (and their counterparts) in the matrix P have not been considered yet. These
elements are related to energy transported by interaction between a wave component of the second mode
and a wave component of the third mode. Since at least one wavenumber for the two modes is purely real
or purely imaginary in the whole frequency range except region II, P23, P26 and P35 are zero over most of
the frequency range. The first parenthesised term in the numerator of Eq. (B.14) indicates that, even in
region II, P23 is zero since k3 ¼ �kn

2. As a result, P26 and P35 are non-zero in region II. Since k6 ¼ kn

2 in
region II, after allowing for the normalisation with respect to a6, P26 in this region is given by

P26 ¼ �
ioEI

k
k2
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n

2Þ
2
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ðkn

2Þ
2
� k2

1
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. (B.15)

In region II, P35 is also non-zero and P35 ¼ P�26.
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